Observation of a 3D Network Nano-Structure of Carbon Nanotubes Scaffold for Cultivation∗
نویسندگان
چکیده
Development of scaffolds consisting of micro-/nano-sized materials have attracted a great deal of attention for their potential use in tissue engineering tools. We prepared a cell culture scaffold of carbon nanotubes, which is a typical bio-inert nanomaterial, and then investigated the surface morphology and properties. A three-dimensional nano-level network structure was observed using a scanning electron microscope and an atomic force microscope. The scaffold also exhibited excellent protein absorption. In order to apply the obtained scaffold to the cultivation of osteoblast cells, the cytocompatibility was comparable to that of a conventional cell culture dish. [DOI: 10.1380/ejssnt.2011.80]
منابع مشابه
Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications
Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...
متن کاملDevelopment of a 3D collagen scaffold coated with multiwalled carbon nanotubes.
Carbon nanotubes (CNTs) have attractive biochemical properties such as strong cell adhesion and protein absorption, which are very useful for a cell cultivation scaffold. In this study, we prepared a multiwalled carbon nanotube-coated collagen sponge (MWCNT-coated sponge) to improve the surface properties of the collagen sponge, and its cell culturing properties were examined. The suface of the...
متن کامل3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration.
OBJECTIVE Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investig...
متن کاملDifferentiation of Human Mesenchymal Stem Cell into Chonderocyte Like Cells 3D Poly Lactic Acid Glycosaminoglycan (PCL-GAG) Nano Fibre Scaffold
Introduction: Failure of human body tissue and organs is believed to be one of the most important health problems all over the world. The great challenge for tissue engineers is to optimize suitable systems to separate, proliferate and differentiate the cells so that they can set out to create tissue by a harmonic 3-D growth. Therefore, the tissue engineers must provide an environment like the ...
متن کاملSynthesis of carbon nano structures on Fe/Cu/AI and Al/Steel by thermal chemical vapour deposition method
Using C2H2, 112 and As gases at 550'C, carbon nanotubes were fabricated on the surfaces of twosubstrates coated by nano thin layers of metal catalysts by DC magnetron sputtering. AYStamless steel andFe/CteAl, by thermal chemical vapor deposition (TCVD) The surface properties of the substrates wereparticularly investigated, and the effect of treatment of the substrates on the CNT's growth is cri...
متن کامل